赞 | 0 |
VIP | 0 |
好人卡 | 0 |
积分 | 1 |
经验 | 460 |
最后登录 | 2014-1-26 |
在线时间 | 7 小时 |
Lv1.梦旅人
- 梦石
- 0
- 星屑
- 50
- 在线时间
- 7 小时
- 注册时间
- 2010-7-14
- 帖子
- 9
|
加入我们,或者,欢迎回来。
您需要 登录 才可以下载或查看,没有帐号?注册会员
x
感觉游戏很有趣的说0.0可是网上只能找到针对游戏的「攻略」而没有针对问题的「题解」呐。
总之我先把我会做的发上来>v<算是抛砖引玉啦〜另外楼主大一党,数学水平有限,题解有什么错误大家请指正@_@
第一题、黎曼猜想。 这个会做才有鬼啦233
第二题、计算S^2的全部同伦群。 糟了我代拓没有怎么学过诶T_T不过大体觉得第一同伦群是平凡群,第二同伦群是Z。。嘛游戏里面又没让回答所以就不证啦:P
第三题、八维射影空间最低能嵌入到几维欧氏空间? 解:看题的时候学过流形的人都能会一半,因为强Whitney定理表明n维光滑能够嵌入2n维欧氏空间。之后查资料得知Whitney证明过当n为2的方幂的时候,n维实射影空间不能嵌入到2n-1维欧氏空间,似乎用了示性类等手段+_+总之8是2的三次方所以RP^8能嵌入16维而不能嵌入15维欧氏空间,所以最低嵌入16维欧氏空间。(总觉得Whitney存在感好高)(另外作者我相信你肯定不是说的复射影空间。。对吧?对吧?Orz)
第四题、R^3中的Alexander角球的性质。它的补空间无界(连通)分支的基本群(Orz好绕口)不能被有限生成,这个我觉得只要看过这个长角的球的模样,再懂点基本的代数拓扑知识就能够一眼看出来。至于其它的选项就Orz了不过至少我知道第一个选项正确^_^
第五题、互不同构的60阶单群。LZ抽象代数没有认真学过所以不知道>_<查了一下资料貌似60阶群有11个,其中单群是交错群A_5,具体怎么证明就不会了T_T寒假要恶补抽代呐555
第六题、Fourier级数的Gibbs现象,这个感觉比较冷门但我看过卓里奇数学分析(☆_☆)所以知道这个概念,是指的在跳跃间断点处「级数左上极限<函数左极限<=函数右极限<级数右下极限」的现象,所以毫不犹豫选第二个啦〜
Extra、1、好像是我们给皇后出的一道关于弱化的Poincare猜想的题目,游戏中并未出现本体所以无视之^_^;2、皇后说的Whitehead问题在ZFC下不可判定,LZ没有听过这个问题耶T_T而且看上去似乎很难所以也算啦
第七题、假定一座aleph1个房间的Hilbert旅馆(好奇葩2333)可以在ZFC下证明无法住入哪类客人?
1)全体自然数 这个是beth0,也是aleph0,当然比aleph1小,可以住进去。
2)全体可数序数 这个应该是ω了吧,所以说是正好aleph1的样子,可以住进去。
3)全体实数 这个是beth1,因为ZFC下不能证明beth1>aleph1,所以不算住不进去(开始我还以为要连续统假设,定睛一看发现原来不需要哦,作者还是挺细心的)
4)全体实变实值连续函数 这个因为是连续函数,只要取定义域中一个可数稠密集,比如有理数集合,就够了,稠密集上的连续函数可以唯一延拓到全空间。所以这样一来基数是beth1,与3同理。
5)aleph1上的全体二元关系 表述有些诡异喔,我的理解是一个基数为aleph1的集合A上的全体二元关系,这样一来就是P(AxA),就成了2^aleph1,这个是大于aleph1的,于是完全住不进去。
6)三维欧氏空间中的所有点 作者终于找不出东西来凑数了吗www,这个和3是几乎一样的哦
总之选5啦,做选择题的话瞟到5直接选就可以咯www
第八题、范畴完备性的充要条件 这个真的不会了,范畴我只是看上同调的时候懂了些概念T_T此题求大神破
之后是选秀命题。第一题又是抽象代数和数论题我不会不会啦(掀桌),只能看到一个歌德巴赫猜想,肯定不选他。。
第二题分析,首先1)证明C[0,1]中处处不可微函数的集合的补集是第一纲的,这应该是泛函分析的吧,看上去是很常见的结论但是暂时不会Orz
2)构造一个处处连续而处处不可微的函数,这个纯粹的放水,学过数学分析的都认识我们亲爱的Weierstrass函数〜
3)证明Banach空间的开映射定理 又是泛函,这个可是课本上的定理呐。。
4)证明连续函数的Fourier级数在L^2范数下收敛到原本的函数 换到调和分析了嗯,貌似用帕塞瓦尔就可以解决?
5)构造一个严格递增、可微但导函数不恒正的函数 看到这题我就噗哈哈了,这是高中的吧?是吧?f(x)=x^3瞬秒喔,作者你一定是学几何的,分析都放这种题www
中间插了一个问题,皇帝问啥是第一纲集,这个可是泛函分析基础中的基础啊喂=_=,无处稠密集的可数并,换句话说闭包没有内点的集合地可数并。皇帝说一直称其为第一范畴集,这无可厚非啦,英文范畴和纲都是Category来着。
第三题是几何,来了作者擅长的了好害怕T_T 一看题目果然各种名词障碍啊捶地 第一第四都不会(名词没见过
2)证明紧空间到Hausdorff的连续满射必是商映射 总感觉在哪里见过=.=是书上的定理?
3)证明与S^3同伦等价的三维闭流形必定与其同胚 喂喂这不是Poincare猜想吗你坑谁呢= =
5)证明有限维欧氏空间的所有奇异同调群和同伦群都是0 这个太明显了吧www作者你又放水
选秀命题过后呢是第十题,链环的环绕数什么的,不知道是哪个理论的(猜是扭结理论?),但反正不会啦+.+
然后见选秀的贵人,第十一题Bool代数的Stone表示定理说明Bool代数范畴与以下哪个范畴存在对偶关系?$#%@又是范畴,而且我会告诉你我对Bool代数唯一的了解是测度论的集合代数吗TAT
之后是二嫔给讲解一种只有一个非零同伦群的空间的构造,听描述感觉很有趣但奈何听不懂构造过程啊泪目
发常在居然问什么是同伦群,简直作大死,这好比在高中数学课上问老师什么是加法一样噗哈哈
后面还有好多问题但多数不懂QAQ这一段就跳过了
第五天,第十二题、就是那个ZF,ZFC,CH啥的互证,反正我只能看出其中一个是错的然后排除法。。。
第十三题、标准二维球面上随机取四点,它们在同一个半球的概率(答案7/8)貌似是相对比较简单的几何题?总之,我画图画跪了,球面几何那是货真价实的一点也没学过,而且概率苦手啊Orz不过我觉得好好算应该不是大问题待我回去和它大战三百回合+_+
然后是逆天的皇长子给逆天的婴儿讲群论,简直碾压我们智商Q_Q中间讲错了的地方都有改正的选项哒,所以不说啦
第八天是最后一题,第十四题,答案全都是错的,也就是说证明交错群A_5、A_7,循环群Z_89,魔群,还有一个不认识的PSL_2(Z_4),全都是单群呜呜呜我擦干泪水回去补习抽代QAQ
总之。。这就是我至今做出来的部分(喂太少了啦,多数题目也都被糊弄过去了
希望大家来完善补充啦啊啊啊我回去补习抽代了 |
|