class FindChest:
MAP01 = [
'+++++++++',
'++++L++++',
'++++.++++',
'+S...T.C+',
'++++.++++',
'++++M++++',
'+++++++++'
]
MAP02 = [
'+++++++++',
'+++L..+M+',
'++++.++.+',
'+S...T..+',
'++++.++.+',
'++++M++C+',
'+++++++++'
]
MAP03 = [
'+++++++++',
'++L....M+',
'++++.++.+',
'+S...T..+',
'++++.++.+',
'++++M++C+',
'+++++++++'
]
MAP04 = [
'+++++++++',
'++L....M+',
'++++.++.+',
'+S....T.+',
'+.++.++.+',
'+....M+C+',
'+++++++++'
]
class FindChest:
MAP01 = [
'+++++++++',
'++++L++++',
'++++.++++',
'+S...T.C+',
'++++.++++',
'++++M++++',
'+++++++++'
]
MAP02 = [
'+++++++++',
'+++L..+M+',
'++++.++.+',
'+S...T..+',
'++++.++.+',
'++++M++C+',
'+++++++++'
]
MAP03 = [
'+++++++++',
'++L....M+',
'++++.++.+',
'+S...T..+',
'++++.++.+',
'++++M++C+',
'+++++++++'
]
MAP04 = [
'+++++++++',
'++L....M+',
'++++.++.+',
'+S....T.+',
'+.++.++.+',
'+....M+C+',
'+++++++++'
]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0.003 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0.001 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
[0.001 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
[0.007 0.007 0. 0. 0. 0. 0. 0. 0. 0. ]
[0.005 0.002 0.002 0.001 0.001 0.001 0. 0. 0. 0. ]
[0.09 0.041 0.036 0.024 0.021 0.017 0.015 0.009 0.009 0.008]
[0.175 0.11 0.102 0.1 0.09 0.078 0.076 0.074 0.072 0.071]
[0.285 0.278 0.254 0.252 0.216 0.213 0.197 0.186 0.173 0.169]
[0.416 0.374 0.356 0.35 0.344 0.323 0.315 0.313 0.293 0.292]
[0.542 0.531 0.514 0.503 0.49 0.474 0.471 0.47 0.464 0.454]
[0.622 0.618 0.616 0.603 0.597 0.594 0.591 0.586 0.584 0.578]
[0.783 0.766 0.739 0.728 0.722 0.717 0.713 0.709 0.699 0.697]
[0.864 0.833 0.826 0.818 0.816 0.803 0.799 0.797 0.796 0.791]
[0.897 0.883 0.882 0.878 0.873 0.871 0.865 0.863 0.858 0.852]
[0.927 0.926 0.926 0.926 0.925 0.911 0.91 0.909 0.907 0.907]
[0.947 0.946 0.945 0.939 0.936 0.936 0.935 0.934 0.929 0.926]
[0.974 0.969 0.965 0.964 0.961 0.961 0.959 0.957 0.956 0.956]
[0.984 0.979 0.977 0.977 0.975 0.975 0.974 0.974 0.973 0.973]
[0.984 0.983 0.982 0.982 0.981 0.981 0.981 0.981 0.978 0.977]
[0.985 0.985 0.984 0.983 0.982 0.982 0.982 0.982 0.982 0.981]
[0.99 0.988 0.987 0.986 0.985 0.985 0.985 0.985 0.984 0.984]
[0.991 0.99 0.989 0.988 0.987 0.986 0.986 0.985 0.985 0.985]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0.003 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0.001 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
[0.001 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
[0.007 0.007 0. 0. 0. 0. 0. 0. 0. 0. ]
[0.005 0.002 0.002 0.001 0.001 0.001 0. 0. 0. 0. ]
[0.09 0.041 0.036 0.024 0.021 0.017 0.015 0.009 0.009 0.008]
[0.175 0.11 0.102 0.1 0.09 0.078 0.076 0.074 0.072 0.071]
[0.285 0.278 0.254 0.252 0.216 0.213 0.197 0.186 0.173 0.169]
[0.416 0.374 0.356 0.35 0.344 0.323 0.315 0.313 0.293 0.292]
[0.542 0.531 0.514 0.503 0.49 0.474 0.471 0.47 0.464 0.454]
[0.622 0.618 0.616 0.603 0.597 0.594 0.591 0.586 0.584 0.578]
[0.783 0.766 0.739 0.728 0.722 0.717 0.713 0.709 0.699 0.697]
[0.864 0.833 0.826 0.818 0.816 0.803 0.799 0.797 0.796 0.791]
[0.897 0.883 0.882 0.878 0.873 0.871 0.865 0.863 0.858 0.852]
[0.927 0.926 0.926 0.926 0.925 0.911 0.91 0.909 0.907 0.907]
[0.947 0.946 0.945 0.939 0.936 0.936 0.935 0.934 0.929 0.926]
[0.974 0.969 0.965 0.964 0.961 0.961 0.959 0.957 0.956 0.956]
[0.984 0.979 0.977 0.977 0.975 0.975 0.974 0.974 0.973 0.973]
[0.984 0.983 0.982 0.982 0.981 0.981 0.981 0.981 0.978 0.977]
[0.985 0.985 0.984 0.983 0.982 0.982 0.982 0.982 0.982 0.981]
[0.99 0.988 0.987 0.986 0.985 0.985 0.985 0.985 0.984 0.984]
[0.991 0.99 0.989 0.988 0.987 0.986 0.986 0.985 0.985 0.985]