赞 | 13 |
VIP | 118 |
好人卡 | 28 |
积分 | 12 |
经验 | 35779 |
最后登录 | 2017-7-6 |
在线时间 | 1564 小时 |
Lv3.寻梦者
- 梦石
- 0
- 星屑
- 1210
- 在线时间
- 1564 小时
- 注册时间
- 2008-7-30
- 帖子
- 4418
|
to 熊猫:既然是物理模型,就和数学扯不上太大关系吧。
to zh:
刚好安有Ruby,公布源码:
-
- #!/usr/local/bin/ruby
- #--
- # matrix.rb -
- # $Release Version: 1.0$
- # $Revision: 1.11 $
- # $Date: 1999/10/06 11:01:53 $
- # Original Version from Smalltalk-80 version
- # on July 23, 1985 at 8:37:17 am
- # by Keiju ISHITSUKA
- #++
- #
- # = matrix.rb
- #
- # An implementation of Matrix and Vector classes.
- #
- # Author:: Keiju ISHITSUKA
- # Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly))
- #
- # See classes Matrix and Vector for documentation.
- #
- require "e2mmap.rb"
- module ExceptionForMatrix # :nodoc:
- extend Exception2MessageMapper
- def_e2message(TypeError, "wrong argument type %s (expected %s)")
- def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")
-
- def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
- def_exception("ErrNotRegular", "Not Regular Matrix")
- def_exception("ErrOperationNotDefined", "This operation(%s) can\\'t defined")
- end
- #
- # The +Matrix+ class represents a mathematical matrix, and provides methods for creating
- # special-case matrices (zero, identity, diagonal, singular, vector), operating on them
- # arithmetically and algebraically, and determining their mathematical properties (trace, rank,
- # inverse, determinant).
- #
- # Note that although matrices should theoretically be rectangular, this is not
- # enforced by the class.
- #
- # Also note that the determinant of integer matrices may be incorrectly calculated unless you
- # also <tt>require 'mathn'</tt>. This may be fixed in the future.
- #
- # == Method Catalogue
- #
- # To create a matrix:
- # * <tt> Matrix[*rows] </tt>
- # * <tt> Matrix.[](*rows) </tt>
- # * <tt> Matrix.rows(rows, copy = true) </tt>
- # * <tt> Matrix.columns(columns) </tt>
- # * <tt> Matrix.diagonal(*values) </tt>
- # * <tt> Matrix.scalar(n, value) </tt>
- # * <tt> Matrix.scalar(n, value) </tt>
- # * <tt> Matrix.identity(n) </tt>
- # * <tt> Matrix.unit(n) </tt>
- # * <tt> Matrix.I(n) </tt>
- # * <tt> Matrix.zero(n) </tt>
- # * <tt> Matrix.row_vector(row) </tt>
- # * <tt> Matrix.column_vector(column) </tt>
- #
- # To access Matrix elements/columns/rows/submatrices/properties:
- # * <tt> [](i, j) </tt>
- # * <tt> #row_size </tt>
- # * <tt> #column_size </tt>
- # * <tt> #row(i) </tt>
- # * <tt> #column(j) </tt>
- # * <tt> #collect </tt>
- # * <tt> #map </tt>
- # * <tt> #minor(*param) </tt>
- #
- # Properties of a matrix:
- # * <tt> #regular? </tt>
- # * <tt> #singular? </tt>
- # * <tt> #square? </tt>
- #
- # Matrix arithmetic:
- # * <tt> *(m) </tt>
- # * <tt> +(m) </tt>
- # * <tt> -(m) </tt>
- # * <tt> #/(m) </tt>
- # * <tt> #inverse </tt>
- # * <tt> #inv </tt>
- # * <tt> ** </tt>
- #
- # Matrix functions:
- # * <tt> #determinant </tt>
- # * <tt> #det </tt>
- # * <tt> #rank </tt>
- # * <tt> #trace </tt>
- # * <tt> #tr </tt>
- # * <tt> #transpose </tt>
- # * <tt> #t </tt>
- #
- # Conversion to other data types:
- # * <tt> #coerce(other) </tt>
- # * <tt> #row_vectors </tt>
- # * <tt> #column_vectors </tt>
- # * <tt> #to_a </tt>
- #
- # String representations:
- # * <tt> #to_s </tt>
- # * <tt> #inspect </tt>
- #
- class Matrix
- @RCS_ID='-$Id: matrix.rb,v 1.11 1999/10/06 11:01:53 keiju Exp keiju $-'
-
- # extend Exception2MessageMapper
- include ExceptionForMatrix
-
- # instance creations
- private_class_method :new
-
- #
- # Creates a matrix where each argument is a row.
- # Matrix[ [25, 93], [-1, 66] ]
- # => 25 93
- # -1 66
- #
- def Matrix.[](*rows)
- new(:init_rows, rows, false)
- end
-
- #
- # Creates a matrix where +rows+ is an array of arrays, each of which is a row
- # to the matrix. If the optional argument +copy+ is false, use the given
- # arrays as the internal structure of the matrix without copying.
- # Matrix.rows([[25, 93], [-1, 66]])
- # => 25 93
- # -1 66
- def Matrix.rows(rows, copy = true)
- new(:init_rows, rows, copy)
- end
-
- #
- # Creates a matrix using +columns+ as an array of column vectors.
- # Matrix.columns([[25, 93], [-1, 66]])
- # => 25 -1
- # 93 66
- #
- #
- def Matrix.columns(columns)
- rows = (0 .. columns[0].size - 1).collect {
- |i|
- (0 .. columns.size - 1).collect {
- |j|
- columns[j][i]
- }
- }
- Matrix.rows(rows, false)
- end
-
- #
- # Creates a matrix where the diagonal elements are composed of +values+.
- # Matrix.diagonal(9, 5, -3)
- # => 9 0 0
- # 0 5 0
- # 0 0 -3
- #
- def Matrix.diagonal(*values)
- size = values.size
- rows = (0 .. size - 1).collect {
- |j|
- row = Array.new(size).fill(0, 0, size)
- row[j] = values[j]
- row
- }
- rows(rows, false)
- end
-
- #
- # Creates an +n+ by +n+ diagonal matrix where each diagonal element is
- # +value+.
- # Matrix.scalar(2, 5)
- # => 5 0
- # 0 5
- #
- def Matrix.scalar(n, value)
- Matrix.diagonal(*Array.new(n).fill(value, 0, n))
- end
- #
- # Creates an +n+ by +n+ identity matrix.
- # Matrix.identity(2)
- # => 1 0
- # 0 1
- #
- def Matrix.identity(n)
- Matrix.scalar(n, 1)
- end
- class << Matrix
- alias unit identity
- alias I identity
- end
-
- #
- # Creates an +n+ by +n+ zero matrix.
- # Matrix.zero(2)
- # => 0 0
- # 0 0
- #
- def Matrix.zero(n)
- Matrix.scalar(n, 0)
- end
-
- #
- # Creates a single-row matrix where the values of that row are as given in
- # +row+.
- # Matrix.row_vector([4,5,6])
- # => 4 5 6
- #
- def Matrix.row_vector(row)
- case row
- when Vector
- Matrix.rows([row.to_a], false)
- when Array
- Matrix.rows([row.dup], false)
- else
- Matrix.rows([[row]], false)
- end
- end
-
- #
- # Creates a single-column matrix where the values of that column are as given
- # in +column+.
- # Matrix.column_vector([4,5,6])
- # => 4
- # 5
- # 6
- #
- def Matrix.column_vector(column)
- case column
- when Vector
- Matrix.columns([column.to_a])
- when Array
- Matrix.columns([column])
- else
- Matrix.columns([[column]])
- end
- end
- #
- # This method is used by the other methods that create matrices, and is of no
- # use to general users.
- #
- def initialize(init_method, *argv)
- self.send(init_method, *argv)
- end
-
- def init_rows(rows, copy)
- if copy
- @rows = rows.collect{|row| row.dup}
- else
- @rows = rows
- end
- self
- end
- private :init_rows
-
- #
- # Returns element (+i+,+j+) of the matrix. That is: row +i+, column +j+.
- #
- def [](i, j)
- @rows[i][j]
- end
- #
- # Returns the number of rows.
- #
- def row_size
- @rows.size
- end
-
- #
- # Returns the number of columns. Note that it is possible to construct a
- # matrix with uneven columns (e.g. Matrix[ [1,2,3], [4,5] ]), but this is
- # mathematically unsound. This method uses the first row to determine the
- # result.
- #
- def column_size
- @rows[0].size
- end
- #
- # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
- # an array). When a block is given, the elements of that vector are iterated.
- #
- def row(i) # :yield: e
- if block_given?
- for e in @rows[i]
- yield e
- end
- else
- Vector.elements(@rows[i])
- end
- end
- #
- # Returns column vector number +j+ of the matrix as a Vector (starting at 0
- # like an array). When a block is given, the elements of that vector are
- # iterated.
- #
- def column(j) # :yield: e
- if block_given?
- 0.upto(row_size - 1) do
- |i|
- yield @rows[i][j]
- end
- else
- col = (0 .. row_size - 1).collect {
- |i|
- @rows[i][j]
- }
- Vector.elements(col, false)
- end
- end
-
- #
- # Returns a matrix that is the result of iteration of the given block over all
- # elements of the matrix.
- # Matrix[ [1,2], [3,4] ].collect { |i| i**2 }
- # => 1 4
- # 9 16
- #
- def collect # :yield: e
- rows = @rows.collect{|row| row.collect{|e| yield e}}
- Matrix.rows(rows, false)
- end
- alias map collect
-
- #
- # Returns a section of the matrix. The parameters are either:
- # * start_row, nrows, start_col, ncols; OR
- # * col_range, row_range
- #
- # Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
- # => 9 0 0
- # 0 5 0
- #
- def minor(*param)
- case param.size
- when 2
- from_row = param[0].first
- size_row = param[0].end - from_row
- size_row += 1 unless param[0].exclude_end?
- from_col = param[1].first
- size_col = param[1].end - from_col
- size_col += 1 unless param[1].exclude_end?
- when 4
- from_row = param[0]
- size_row = param[1]
- from_col = param[2]
- size_col = param[3]
- else
- Matrix.Raise ArgumentError, param.inspect
- end
-
- rows = @rows[from_row, size_row].collect{
- |row|
- row[from_col, size_col]
- }
- Matrix.rows(rows, false)
- end
-
- #--
- # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
- #
- # Returns +true+ if this is a regular matrix.
- #
- def regular?
- square? and rank == column_size
- end
-
- #
- # Returns +true+ is this is a singular (i.e. non-regular) matrix.
- #
- def singular?
- not regular?
- end
- #
- # Returns +true+ is this is a square matrix. See note in column_size about this
- # being unreliable, though.
- #
- def square?
- column_size == row_size
- end
-
- #--
- # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
- #
- # Returns +true+ if and only if the two matrices contain equal elements.
- #
- def ==(other)
- return false unless Matrix === other
-
- other.compare_by_row_vectors(@rows)
- end
- alias eql? ==
-
- #
- # Not really intended for general consumption.
- #
- def compare_by_row_vectors(rows)
- return false unless @rows.size == rows.size
-
- 0.upto(@rows.size - 1) do
- |i|
- return false unless @rows[i] == rows[i]
- end
- true
- end
-
- #
- # Returns a clone of the matrix, so that the contents of each do not reference
- # identical objects.
- #
- def clone
- Matrix.rows(@rows)
- end
-
- #
- # Returns a hash-code for the matrix.
- #
- def hash
- value = 0
- for row in @rows
- for e in row
- value ^= e.hash
- end
- end
- return value
- end
-
- #--
- # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Matrix multiplication.
- # Matrix[[2,4], [6,8]] * Matrix.identity(2)
- # => 2 4
- # 6 8
- #
- def *(m) # m is matrix or vector or number
- case(m)
- when Numeric
- rows = @rows.collect {
- |row|
- row.collect {
- |e|
- e * m
- }
- }
- return Matrix.rows(rows, false)
- when Vector
- m = Matrix.column_vector(m)
- r = self * m
- return r.column(0)
- when Matrix
- Matrix.Raise ErrDimensionMismatch if column_size != m.row_size
-
- rows = (0 .. row_size - 1).collect {
- |i|
- (0 .. m.column_size - 1).collect {
- |j|
- vij = 0
- 0.upto(column_size - 1) do
- |k|
- vij += self[i, k] * m[k, j]
- end
- vij
- }
- }
- return Matrix.rows(rows, false)
- else
- x, y = m.coerce(self)
- return x * y
- end
- end
-
- #
- # Matrix addition.
- # Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
- # => 6 0
- # -4 12
- #
- def +(m)
- case m
- when Numeric
- Matrix.Raise ErrOperationNotDefined, "+"
- when Vector
- m = Matrix.column_vector(m)
- when Matrix
- else
- x, y = m.coerce(self)
- return x + y
- end
-
- Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
-
- rows = (0 .. row_size - 1).collect {
- |i|
- (0 .. column_size - 1).collect {
- |j|
- self[i, j] + m[i, j]
- }
- }
- Matrix.rows(rows, false)
- end
- #
- # Matrix subtraction.
- # Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
- # => -8 2
- # 8 1
- #
- def -(m)
- case m
- when Numeric
- Matrix.Raise ErrOperationNotDefined, "-"
- when Vector
- m = Matrix.column_vector(m)
- when Matrix
- else
- x, y = m.coerce(self)
- return x - y
- end
-
- Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
-
- rows = (0 .. row_size - 1).collect {
- |i|
- (0 .. column_size - 1).collect {
- |j|
- self[i, j] - m[i, j]
- }
- }
- Matrix.rows(rows, false)
- end
-
- #
- # Matrix division (multiplication by the inverse).
- # Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
- # => -7 1
- # -3 -6
- #
- def /(other)
- case other
- when Numeric
- rows = @rows.collect {
- |row|
- row.collect {
- |e|
- e / other
- }
- }
- return Matrix.rows(rows, false)
- when Matrix
- return self * other.inverse
- else
- x, y = other.coerce(self)
- rerurn x / y
- end
- end
- #
- # Returns the inverse of the matrix.
- # Matrix[[1, 2], [2, 1]].inverse
- # => -1 1
- # 0 -1
- #
- def inverse
- Matrix.Raise ErrDimensionMismatch unless square?
- Matrix.I(row_size).inverse_from(self)
- end
- alias inv inverse
- #
- # Not for public consumption?
- #
- def inverse_from(src)
- size = row_size - 1
- a = src.to_a
-
- for k in 0..size
- if (akk = a[k][k]) == 0
- i = k
- begin
- Matrix.Raise ErrNotRegular if (i += 1) > size
- end while a[i][k] == 0
- a[i], a[k] = a[k], a[i]
- @rows[i], @rows[k] = @rows[k], @rows[i]
- akk = a[k][k]
- end
-
- for i in 0 .. size
- next if i == k
- q = a[i][k] / akk
- a[i][k] = 0
-
- (k + 1).upto(size) do
- |j|
- a[i][j] -= a[k][j] * q
- end
- 0.upto(size) do
- |j|
- @rows[i][j] -= @rows[k][j] * q
- end
- end
-
- (k + 1).upto(size) do
- |j|
- a[k][j] /= akk
- end
- 0.upto(size) do
- |j|
- @rows[k][j] /= akk
- end
- end
- self
- end
- #alias reciprocal inverse
-
- #
- # Matrix exponentiation. Defined for integer powers only. Equivalent to
- # multiplying the matrix by itself N times.
- # Matrix[[7,6], [3,9]] ** 2
- # => 67 96
- # 48 99
- #
- def ** (other)
- if other.kind_of?(Integer)
- x = self
- if other <= 0
- x = self.inverse
- return Matrix.identity(self.column_size) if other == 0
- other = -other
- end
- z = x
- n = other - 1
- while n != 0
- while (div, mod = n.divmod(2)
- mod == 0)
- x = x * x
- n = div
- end
- z *= x
- n -= 1
- end
- z
- elsif other.kind_of?(Float) || defined?(Rational) && other.kind_of?(Rational)
- Matrix.Raise ErrOperationNotDefined, "**"
- else
- Matrix.Raise ErrOperationNotDefined, "**"
- end
- end
-
- #--
- # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Returns the determinant of the matrix. If the matrix is not square, the
- # result is 0.
- # Matrix[[7,6], [3,9]].determinant
- # => 63
- #
- def determinant
- return 0 unless square?
-
- size = row_size - 1
- a = to_a
-
- det = 1
- k = 0
- begin
- if (akk = a[k][k]) == 0
- i = k
- begin
- return 0 if (i += 1) > size
- end while a[i][k] == 0
- a[i], a[k] = a[k], a[i]
- akk = a[k][k]
- det *= -1
- end
- (k + 1).upto(size) do
- |i|
- q = a[i][k] / akk
- (k + 1).upto(size) do
- |j|
- a[i][j] -= a[k][j] * q
- end
- end
- det *= akk
- end while (k += 1) <= size
- det
- end
- alias det determinant
-
- #
- # Returns the rank of the matrix. Beware that using Float values, with their
- # usual lack of precision, can affect the value returned by this method. Use
- # Rational values instead if this is important to you.
- # Matrix[[7,6], [3,9]].rank
- # => 2
- #
- def rank
- if column_size > row_size
- a = transpose.to_a
- a_column_size = row_size
- a_row_size = column_size
- else
- a = to_a
- a_column_size = column_size
- a_row_size = row_size
- end
- rank = 0
- k = 0
- begin
- if (akk = a[k][k]) == 0
- i = k
- exists = true
- begin
- if (i += 1) > a_column_size - 1
- exists = false
- break
- end
- end while a[i][k] == 0
- if exists
- a[i], a[k] = a[k], a[i]
- akk = a[k][k]
- else
- i = k
- exists = true
- begin
- if (i += 1) > a_row_size - 1
- exists = false
- break
- end
- end while a[k][i] == 0
- if exists
- k.upto(a_column_size - 1) do
- |j|
- a[j][k], a[j][i] = a[j][i], a[j][k]
- end
- akk = a[k][k]
- else
- next
- end
- end
- end
- (k + 1).upto(a_row_size - 1) do
- |i|
- q = a[i][k] / akk
- (k + 1).upto(a_column_size - 1) do
- |j|
- a[i][j] -= a[k][j] * q
- end
- end
- rank += 1
- end while (k += 1) <= a_column_size - 1
- return rank
- end
- #
- # Returns the trace (sum of diagonal elements) of the matrix.
- # Matrix[[7,6], [3,9]].trace
- # => 16
- #
- def trace
- tr = 0
- 0.upto(column_size - 1) do
- |i|
- tr += @rows[i][i]
- end
- tr
- end
- alias tr trace
-
- #
- # Returns the transpose of the matrix.
- # Matrix[[1,2], [3,4], [5,6]]
- # => 1 2
- # 3 4
- # 5 6
- # Matrix[[1,2], [3,4], [5,6]].transpose
- # => 1 3 5
- # 2 4 6
- #
- def transpose
- Matrix.columns(@rows)
- end
- alias t transpose
-
- #--
- # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # FIXME: describe #coerce.
- #
- def coerce(other)
- case other
- when Numeric
- return Scalar.new(other), self
- else
- raise TypeError, "#{self.class} can't be coerced into #{other.class}"
- end
- end
- #
- # Returns an array of the row vectors of the matrix. See Vector.
- #
- def row_vectors
- rows = (0 .. row_size - 1).collect {
- |i|
- row(i)
- }
- rows
- end
-
- #
- # Returns an array of the column vectors of the matrix. See Vector.
- #
- def column_vectors
- columns = (0 .. column_size - 1).collect {
- |i|
- column(i)
- }
- columns
- end
-
- #
- # Returns an array of arrays that describe the rows of the matrix.
- #
- def to_a
- @rows.collect{|row| row.collect{|e| e}}
- end
-
- #--
- # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Overrides Object#to_s
- #
- def to_s
- "Matrix[" + @rows.collect{
- |row|
- "[" + row.collect{|e| e.to_s}.join(", ") + "]"
- }.join(", ")+"]"
- end
-
- #
- # Overrides Object#inspect
- #
- def inspect
- "Matrix"[email protected]
- end
-
- # Private CLASS
-
- class Scalar < Numeric # :nodoc:
- include ExceptionForMatrix
-
- def initialize(value)
- @value = value
- end
-
- # ARITHMETIC
- def +(other)
- case other
- when Numeric
- Scalar.new(@value + other)
- when Vector, Matrix
- Scalar.Raise WrongArgType, other.class, "Numeric or Scalar"
- when Scalar
- Scalar.new(@value + other.value)
- else
- x, y = other.coerce(self)
- x + y
- end
- end
-
- def -(other)
- case other
- when Numeric
- Scalar.new(@value - other)
- when Vector, Matrix
- Scalar.Raise WrongArgType, other.class, "Numeric or Scalar"
- when Scalar
- Scalar.new(@value - other.value)
- else
- x, y = other.coerce(self)
- x - y
- end
- end
-
- def *(other)
- case other
- when Numeric
- Scalar.new(@value * other)
- when Vector, Matrix
- other.collect{|e| @value * e}
- else
- x, y = other.coerce(self)
- x * y
- end
- end
-
- def / (other)
- case other
- when Numeric
- Scalar.new(@value / other)
- when Vector
- Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
- when Matrix
- self * _M.inverse
- else
- x, y = other.coerce(self)
- x / y
- end
- end
-
- def ** (other)
- case other
- when Numeric
- Scalar.new(@value ** other)
- when Vector
- Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
- when Matrix
- other.powered_by(self)
- else
- x, y = other.coerce(self)
- x ** y
- end
- end
- end
- end
- #
- # The +Vector+ class represents a mathematical vector, which is useful in its own right, and
- # also constitutes a row or column of a Matrix.
- #
- # == Method Catalogue
- #
- # To create a Vector:
- # * <tt> Vector.[](*array) </tt>
- # * <tt> Vector.elements(array, copy = true) </tt>
- #
- # To access elements:
- # * <tt> [](i) </tt>
- #
- # To enumerate the elements:
- # * <tt> #each2(v) </tt>
- # * <tt> #collect2(v) </tt>
- #
- # Vector arithmetic:
- # * <tt> *(x) "is matrix or number" </tt>
- # * <tt> +(v) </tt>
- # * <tt> -(v) </tt>
- #
- # Vector functions:
- # * <tt> #inner_product(v) </tt>
- # * <tt> #collect </tt>
- # * <tt> #map </tt>
- # * <tt> #map2(v) </tt>
- # * <tt> #r </tt>
- # * <tt> #size </tt>
- #
- # Conversion to other data types:
- # * <tt> #covector </tt>
- # * <tt> #to_a </tt>
- # * <tt> #coerce(other) </tt>
- #
- # String representations:
- # * <tt> #to_s </tt>
- # * <tt> #inspect </tt>
- #
- class Vector
- include ExceptionForMatrix
-
- #INSTANCE CREATION
-
- private_class_method :new
- #
- # Creates a Vector from a list of elements.
- # Vector[7, 4, ...]
- #
- def Vector.[](*array)
- new(:init_elements, array, copy = false)
- end
-
- #
- # Creates a vector from an Array. The optional second argument specifies
- # whether the array itself or a copy is used internally.
- #
- def Vector.elements(array, copy = true)
- new(:init_elements, array, copy)
- end
-
- #
- # For internal use.
- #
- def initialize(method, array, copy)
- self.send(method, array, copy)
- end
-
- #
- # For internal use.
- #
- def init_elements(array, copy)
- if copy
- @elements = array.dup
- else
- @elements = array
- end
- end
-
- # ACCESSING
-
- #
- # Returns element number +i+ (starting at zero) of the vector.
- #
- def [](i)
- @elements[i]
- end
-
- #
- # Returns the number of elements in the vector.
- #
- def size
- @elements.size
- end
-
- #--
- # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
- #
- # Iterate over the elements of this vector and +v+ in conjunction.
- #
- def each2(v) # :yield: e1, e2
- Vector.Raise ErrDimensionMismatch if size != v.size
- 0.upto(size - 1) do
- |i|
- yield @elements[i], v[i]
- end
- end
-
- #
- # Collects (as in Enumerable#collect) over the elements of this vector and +v+
- # in conjunction.
- #
- def collect2(v) # :yield: e1, e2
- Vector.Raise ErrDimensionMismatch if size != v.size
- (0 .. size - 1).collect do
- |i|
- yield @elements[i], v[i]
- end
- end
- #--
- # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
- #
- # Returns +true+ iff the two vectors have the same elements in the same order.
- #
- def ==(other)
- return false unless Vector === other
-
- other.compare_by(@elements)
- end
- alias eqn? ==
-
- #
- # For internal use.
- #
- def compare_by(elements)
- @elements == elements
- end
-
- #
- # Return a copy of the vector.
- #
- def clone
- Vector.elements(@elements)
- end
-
- #
- # Return a hash-code for the vector.
- #
- def hash
- @elements.hash
- end
-
- #--
- # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Multiplies the vector by +x+, where +x+ is a number or another vector.
- #
- def *(x)
- case x
- when Numeric
- els = @elements.collect{|e| e * x}
- Vector.elements(els, false)
- when Matrix
- Matrix.column_vector(self) * x
- else
- s, x = x.coerce(self)
- s * x
- end
- end
- #
- # Vector addition.
- #
- def +(v)
- case v
- when Vector
- Vector.Raise ErrDimensionMismatch if size != v.size
- els = collect2(v) {
- |v1, v2|
- v1 + v2
- }
- Vector.elements(els, false)
- when Matrix
- Matrix.column_vector(self) + v
- else
- s, x = v.coerce(self)
- s + x
- end
- end
- #
- # Vector subtraction.
- #
- def -(v)
- case v
- when Vector
- Vector.Raise ErrDimensionMismatch if size != v.size
- els = collect2(v) {
- |v1, v2|
- v1 - v2
- }
- Vector.elements(els, false)
- when Matrix
- Matrix.column_vector(self) - v
- else
- s, x = v.coerce(self)
- s - x
- end
- end
-
- #--
- # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Returns the inner product of this vector with the other.
- # Vector[4,7].inner_product Vector[10,1] => 47
- #
- def inner_product(v)
- Vector.Raise ErrDimensionMismatch if size != v.size
-
- p = 0
- each2(v) {
- |v1, v2|
- p += v1 * v2
- }
- p
- end
-
- #
- # Like Array#collect.
- #
- def collect # :yield: e
- els = @elements.collect {
- |v|
- yield v
- }
- Vector.elements(els, false)
- end
- alias map collect
-
- #
- # Like Vector#collect2, but returns a Vector instead of an Array.
- #
- def map2(v) # :yield: e1, e2
- els = collect2(v) {
- |v1, v2|
- yield v1, v2
- }
- Vector.elements(els, false)
- end
-
- #
- # Returns the modulus (Pythagorean distance) of the vector.
- # Vector[5,8,2].r => 9.643650761
- #
- def r
- v = 0
- for e in @elements
- v += e*e
- end
- return Math.sqrt(v)
- end
-
- #--
- # CONVERTING
- #++
- #
- # Creates a single-row matrix from this vector.
- #
- def covector
- Matrix.row_vector(self)
- end
-
- #
- # Returns the elements of the vector in an array.
- #
- def to_a
- @elements.dup
- end
-
- #
- # FIXME: describe Vector#coerce.
- #
- def coerce(other)
- case other
- when Numeric
- return Scalar.new(other), self
- else
- raise TypeError, "#{self.class} can't be coerced into #{other.class}"
- end
- end
-
- #--
- # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Overrides Object#to_s
- #
- def to_s
- "Vector[" + @elements.join(", ") + "]"
- end
-
- #
- # Overrides Object#inspect
- #
- def inspect
- str = "Vector"[email protected]
- end
- end
- # Documentation comments:
- # - Matrix#coerce and Vector#coerce need to be documented
复制代码 |
|